Design Repair Approval S This form provides evidence of approve		ance with GAM/AE0).P11	
Organisation:	DRAS Ref No: GAM004/DRAS	Issue No: 0	Page 1 of 15	
GalaxyAerospace				
AEO Reference: AEO 17/2018	Date: 17/07/2019			
Organisation operating H/C (Owner):	H/C Type: AS555	Ser. No: 5719 Reg. No.: M502-0	F/H F/C	
ROYAL MALAYSIAN NAVY (RMN)	H/C Component: NIL	I/C Component: Part No: NIL F/H		
Title: REPAIR - FUSELAGE AFT STR	RUCTURE LATERAL SH			
Damage/Repair Description: See Anne Repair Drawing No(s): NIL	ex 2 for Description of Da	amage and Annex 3	for Description of	
Repair Classification:	MAJOR / MINOF	२		
Reasons for Classification: See Annex 1 Reasons for Classification: See Annex 1 MOHD YUSSYUWARI MD YUSOP Date: 17/07/2019				
TCDS ref. & Regulations involved:	MSTC/16 & FAR 27 301 27 303 27 307 27 507			
Justification: Refer GAM004/CC and	I GAM004/SJR			
Fatigue Evaluation Document: NIL				
Other related substantiation (includes r	ef. to communication wi	th TC/STC, …): NIL		
Impact on Maintenance Program/Op	erational Procedures:			
 Details of impact on existing Maintee NIL 	enance Program			
Details of impact on Operational Pr NIL	rocedures			
Compliance is declared with the airworthiness ar declaration has been made under the AEO privil		equirements as defined ur	nder Para. 3. This	
Prepared by	Name & Signa MUHAMAD AS Date: 17/07/	SRAF ZAMRI 2019	April	
Verified by	Name & Signa NUR FARHAN Date: 17/07/	A OTHMAN	17.	
Approved by	Name & Signa MOHD YUSSY Date: 17/07/	UWARI MD YUSOF	Symalzu	
Accepted by	Name & Signa KDR. NIK AFIZ Date: \9 Ju	ZUL NIK ALIAS	And	

Distribution list: 1.ROYAL MALAYSIAN NAVY

The technical content of this document is approved under the authority of the AEO Approval No. AEO 17/2018

DRAS

Date: 17/07/2019 Issue: 0 Page: 2 of 15

Annex 1 – Reasons for Classification

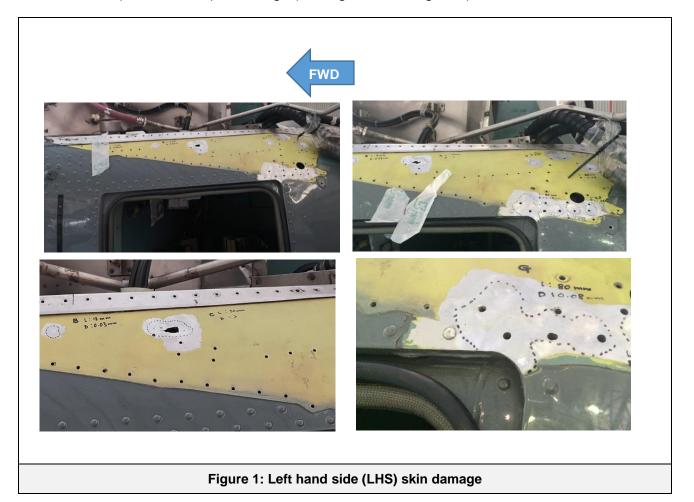
CRITERIA		NO	REMARKS
The repair has appreciable effect on <u>weight and balance</u> .			The repair scheme implementing the doubler reinforcement and the total weight is very small (1.185 kg or 0.046%) compared to aircraft's maximum permissible weight of 2600 kg. Aircraft CG will still be in its CG envelope. This scheme neither affect aircraft's operational characteristics nor powerplant operation.
The repair has appreciable effect on structural performance such as:			The repair scheme does not
 Fatigue / damage tolerance characteristics adversely affected, 		\boxtimes	involve any alteration to aircraft primary structure that may require
 Fatigue behaviour (if the new lifetime of the changed part is below the lifetime published for the original part), 			fatigue evaluation.
 Flutter and stiffness characteristics adversely affected. Changes of materials, processes or manufacturing methods 		\boxtimes	
 Changes of materials, processes or manufacturing methods of <u>primary structural elements</u> or other critical parts 			
 The repair has appreciable effect on <u>performance</u> such as: Approved performance adversely affected, Flight envelope adversely affected, Handling qualities adversely affected, 		\boxtimes	No appreciable change on the Aircraft performance, flight envelope and any flight controls.
The repair has appreciable effect on			No appreciable effect on other Characteristics affecting the
• Aerodynamics			airworthiness of the aircraft.
 Load path and load sharing Noise and emissions 		\boxtimes	
 Noise and emissions Fire protection / resistance 			
The demonstration of compliance uses <u>methods or processes that</u> <u>have not been previously accepted as appropriate</u> for the nature of the repair (i.e. unusual material selection, heat treatment, material processes, jigging diagrams etc)			No new process or method introduced by this repair scheme.
The repair has appreciable effect on the Airworthiness Limitations section of the maintenance manual.			Airworthiness and Operating Limitations in Aircraft Flight Manual remains unchanged.
The repair has appreciable effect on the operation of the complete system (i.e. significant impact on critical function) and on system redundancy.			The repair scheme does not contribute to noise increment or decrement and does not have appreciable effect on reliability.
The repair requires a permanent additional inspection to the approved maintenance programme.			There is no permanent addition on inspection introduced into approved maintenance program
The repair constitutes the subject or impacts the content of an Airworthiness Directive			The repair does constitute the subject or impacts the content of an Airworthiness Directive
Means of compliance with certification rules are unusual			There is no unusual compliance use for this repair.
The extent of new substantiation data necessary to comply with the applicable airworthiness requirements and the degree to which the			No new substantiation data necessary to comply, to be reassessed and re-evaluated.

"

DRAS

Date: 17/07/2019 Issue: 0 Page: 3 of 15

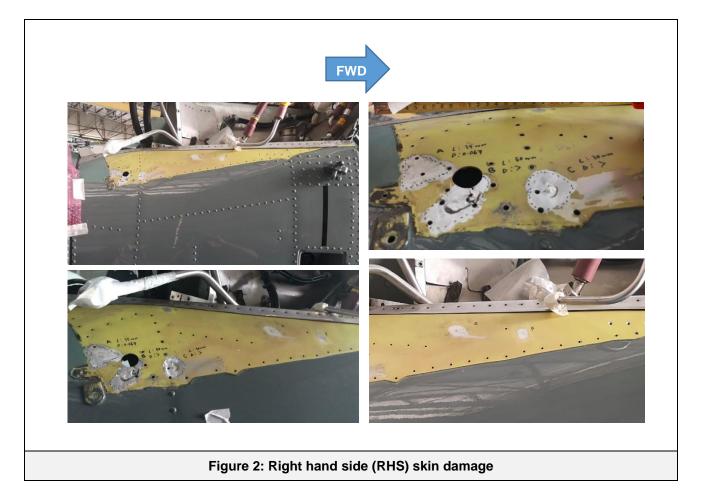
CRITERIA	YES	NO	REMARKS	
original substantiation data has to be re-assessed and re-evaluated is considerable.				
CONCLUSIONS	MAJOR		AJOR	MINOR
OTHER REMARKS				
As per repair classification checklist, it is concluded that the classification of this repair is minor change.				



DRAS

Date: 17/07/2019 Issue: 0 Page: 4 of 15

Annex 2: Description of Damage


Corrosion beneath Rear structure stainless steel plates found during C inspection through which was conducted IAW *MET* 53-00-00-610- check - Corrosion under the stainless-steel Plate of the Rear Structure (with Removal) - Fuselage (see Figure 1 and Figure 2).

DRAS

Date: 17/07/2019 Issue: 0 Page: 5 of 15

DRAS

Date: 17/07/2019 Issue: 0 Page: 6 of 15

Annex 3: Description of Repair

PRELIMINARY WORKS:

- 1. Park the helicopter in hangar as per MTC 20-07-02-201.
- 2. Remove and/or open all cowlings, panels, doors and equipment as required for access to the various work areas.
- 3. General notes:
 - All the works, un-riveting, manufacturing, adjusting, cleaning, drilling, protection and so on, must be carried out IAW the MTC instructions.
 - > To avoid all risks of cracks, make radius on every edge tooled.
 - The rivet's distribution of the assembly (distance and pitch), and all the works, must be carried out in compliance with the instructions of the MTC.
 - Rivet the part after coating the contact surfaces of the various parts with PR1771B2 and produce a sealant bead.
 - If necessary, for the removed rivets during the repair, use rivets with the next-larger diameter.
 - Protect the aluminium alloy parts with ALODINE 1200 + strontium chromate primer epoxy P05 before mounting.
 - > Touch up the protection and final paint after riveting.

LH SKIN REPAIR

PROCEDURE:

- 1. Remove the stainless-steel (1) sheet IAW 53-00-00-610.
- 2. Mark and identify the position and type of the various rivets located around the steel plate (1).
- 3. Clean the surface area IAW MTC 20-04-01-402.
- 4. Sand to suppress entirely the corrosion on all affected areas.
- 5. Perform Non-destructive test (NDT) dye-penetrant normal procedure on the affected repair areas (IAW MTC-20-90-03-104). Dye-penetrant inspection visible with daylight.
- 6. Contact GAM AEO if extensive damage found. Proceed with next step if no extensive damage found
- 7. Place transparent perspex template on the skin and note all the existing rivet location.

NOTE 1
The rigorous registration of the rivets will allow a mounting of the
stainless steel sheet identical during reassembly

- 8. Apply Alodine (9) and chromate primer epoxy (10) on the corrosion affected areas.
- Fabricate the DOUBLER 1 (1) & 2 (2) with Aluminium 2024-T3 thickness 1.2mm as per Appendix A.
- 10. Apply fabricated parts with Alodine 1200 (9) and chromate primer epoxy (10).
- 11. Deburr and remove all sharp edges.
- 12. Cut out the aft structure lateral skin IAW Figure 1: LHS Repair Detail A
- 13. Place transparent perspex template on the internal side of the cut-out hole.
- 14. Draw line as per the exact shape of the cut-out hole using marker. Trim transparent perspex template as per drawn line.

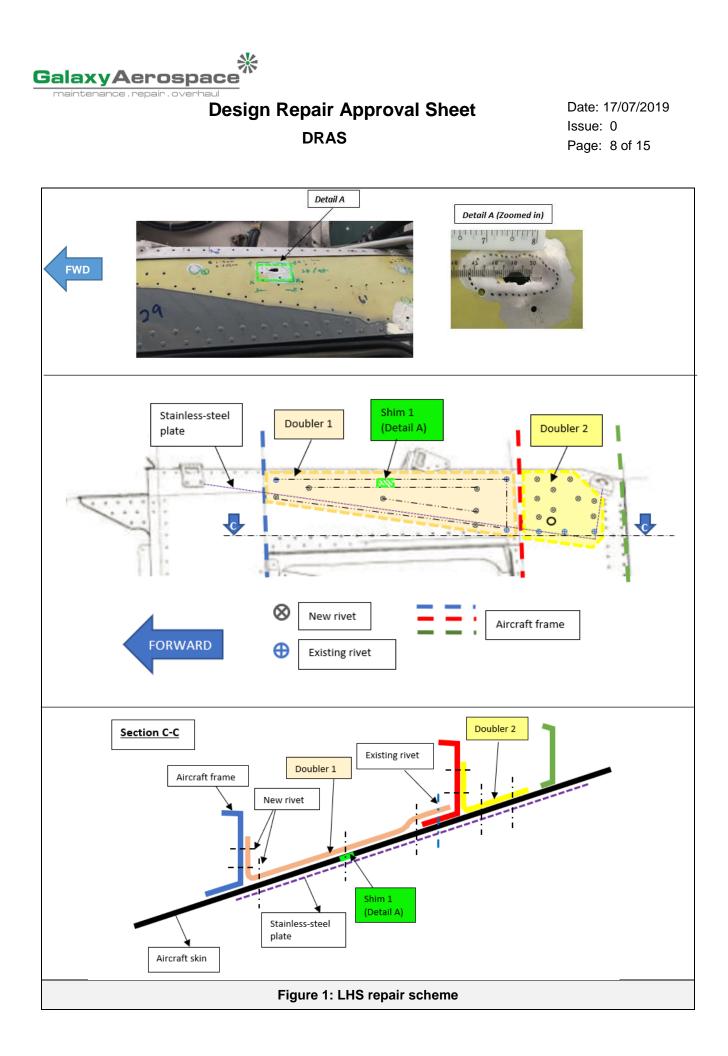
GalaxyAerospace

Design Repair Approval Sheet

DRAS

Date: 17/07/2019 Issue: 0 Page: 7 of 15

- 15. Perform NDT dye penetrant normal procedure on the cut-out (step 12) within 1 inch from the edge of cut-out area.
- 16. Fabricate the SHIM 1(3) following the trimmed transparent perspex template (step 14)
- 17. Position DOUBLER 1 (1) & 2 (2) on the internal side of the aft structure lateral skin, pre-drill and drill IAW existing rivets, then remove.
- 18. Mark and pre-drill on DOUBLER 1 (1), 2 (2) & SHIM 1 (3) all new additional holes IAW MTC 20-02-04-401.
- 19. Ensure the minimum edge distance of fastener (2D for protruding and 2.5D for countersunk) must be obligated.
- 20. Ensure the fastener must be spaced apart at least (4D for protruding and 5D for countersunk) must be obligated
- 21. Deburr DOUBLER 1 (1) & 2 (2) and aft structure lateral skin.
- 22. Position and fix DOUBLER 1 (1) & 2 (2) on internal side of the aft structure lateral skin , counter drill rivets holes, then remove,
- 23. Position and fix SHIM 1 (3) on top of the Doubler 1 (1),counter drill rivets holes, pre-drilled and then cleco or pin the shim to skin and the remove.
- 24. Fill up all the corroded reworked areas with DEVCON (8).
- 25. Position DOUBLER 1 (1) & 2 (2) on the internal side of the aft structure lateral skin and SHIM 1 (3) on top of the DOUBLER 1 (1)
- 26. Secure stainless-steel sheet and DOUBLER 1 (1), 2 (2) & SHIM 1 (3) on the structure with solid rivets mounted to the "PR1782B2 wet" (7) (same references as registered during its removal).


NOTE 2

The actual thickness to rivet may vary according to the stacking of single pieces, their number and their protection, it is allowed to replace the rivet by a rivet of the same standard but with a code length greater or less depending on the thickness real gauged during

assembly

27. Touch up the protection and final paint after riveting IAW MTC 20-04-05-101.

- 28. Apply seal bead with PR 1782B2 (7) all around the stainless-steel sheet.
- 29. Install the stainless-steel sheet with CA1010 (11) on mating surfaces.
- 30. Perform bonding check on the doubler and skin of the aircraft IAW MTC 20-02-07-101.

DRAS

Date: 17/07/2019 Issue: 0 Page: 9 of 15

RH SKIN REPAIR

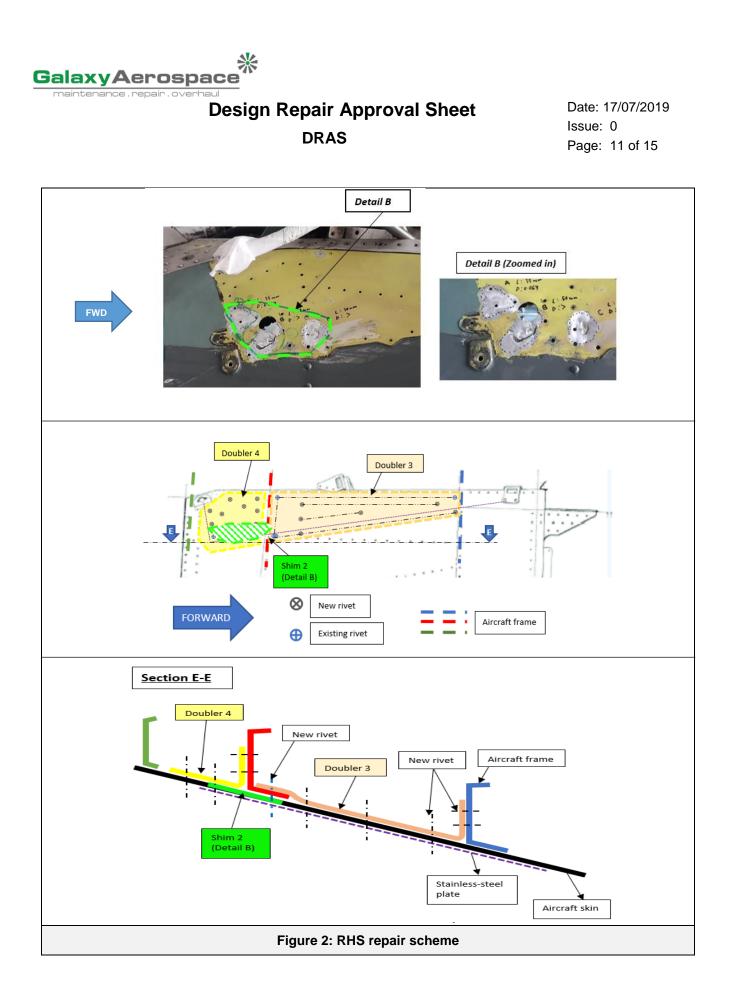
PROCEDURE:

- 1. Remove the stainless-steel sheet (1) IAW 53-00-00-610
- 2. Mark and identify the position and type of the various rivets located around the steel plate (1).
- 3. Clean the surface area IAW MTC 20-04-01-402.
- 4. Sand to supress entirely the corrosion on all affected areas.
- 5. Perform Non-destructive test (NDT) dye-penetrant normal procedure on the affected repair areas (IAW MTC-20-90-03-104). Dye-penetrant inspection visible with daylight.
- 6. Contact GAM AEO if extensive damage found. Proceed with next step if no extensive damage found
- 7. Place transparent perspex template on the skin and note all the existing rivet location.

NOTE 3

The rigorous registration of the rivets will allow a mounting of the stainless steel sheet identical during reassembly

- 8. Apply Alodine (9) and chromate primer epoxy (10) on the corrosion affected areas.
- 9. Fabricate the DOUBLER 3 (4) & 4 (5) with Aluminum 2024-T3 thickness 1.2 mm as per Appendix B
- 10. Apply fabricated parts with Alodine 1200 (9) and chromate primer epoxy (10).
- 11. Deburr and remove all sharp edges.
- 12. Cut out the aft structure lateral skin IAW Figure 2: RHS Repair Detail B
- 13. Place transparent perspex template on the internal side of the cut-out hole.
- 14. Draw line as per the exact shape of the cut-out hole using marker. Trim transparent perspex template as per drawn line.
- 15. Perform NDT dye penetrant normal procedure on the cut-out (step 12) within 1 inch from the edge of cut-out area.
- 16. Fabricate the SHIM 2(6) following the trimmed transparent perspex template (step 14)
- 17. Position DOUBLER 3 (4) & 4 (5) on the internal side of the aft structure lateral skin, pre-drill and drill IAW existing rivets, then remove.
- 18. Mark and pre-drill on DOUBLER 3 (4), 4 (5) & SHIM 2 (6) all new additional holes IAW MTC 20-02-04-401.
- 19. Ensure the minimum edge distance of fastener (2D for protruding and 2.5D for countersunk) must be obligated.
- 20. Ensure the fastener must be spaced apart at least (4D for protruding and 5D for countersunk) must be obligated.
- 21. Deburr DOUBLER 3 (4) & 4 (5) and aft structure lateral skin.
- 22. Position and fix DOUBLER 3 (4) & 4 (5 on internal side of the aft structure lateral skin, counter drill all rivets holes, then remove, pre-drilled and then cleco or pin the shim to skin.
- 23. Position and fix SHIM 2 (6) on top of the DOUBLER 3 (4) & DOUBLER 4 (5), counter drill rivets holes, then remove.
- 24. Fill up all the reworked areas with DEVCON (8).
- 25. Position DOUBLER 3 (4) & 4 (5) on the internal side of the aft structure lateral skin and SHIM 2 (6) on the top of the DOUBLER 3 (4) & DOUBLER 4 (5).
- 26. Secure stainless-steel sheet and DOUBLER 3 (4), 4 (5) & SHIM 2 (6) on the structure with solid rivets mounted to the "PR 1782B2 wet"(7) (same references as registered during its removal)


DRAS

Date: 17/07/2019 Issue: 0 Page: 10 of 15

NOTE 4

The actual thickness to rivet may vary according to the stacking of single pieces, their number and their protection, it is allowed to replace the rivet by a rivet of the same standard but with a code length greater or less depending on the thickness real gauged during assembly

- 27. Touch up the protection and final paint after riveting IAW MTC 20-04-05-101.
- 28. Apply seal bead with PR 1782B2 (7) all around the stainless-steel sheet.
- 29. Install the stainless-steel sheet with CA1010 (11) on mating surfaces,
- 30. Perform bonding check on the doubler and the skin of the aircraft IAW MTC 20-02-07-101.

DRAS

Date: 17/07/2019 Issue: 0 Page: 12 of 15

REFERENCE

Standard Practice Manual (SPM = MTC)

MET 53.00.00.610	Check – Corrosion under steel plate of the rear	
	structure (with removal)	
MTC-20-90-03-104	Detection by dye penetrant inspection	
MTC 20.02.04.401	Installation Of Rivets - Pitches And Edge	
	Distance	
MTC 20.02.04.402	Installation Of Rivets - Retrofitting And Repair	
MTC 20.02.04.601	General Riveting Acceptance Requirements	
MTC 20.03.01.101	General Repair Instructions: General	
MTC 20.03.01.102	General Repair Instructions: Unriveting	
	Principle	
MTC 20.03.02.101	Replacement Of Rivets: General	
MTC 20.03.02.401	Installation Of Normal Rivets	
MTC 20.05.01.102	General Methods For Applying Sealing	
	Compounds	
MTC 20.02.07.101	Electrical bonding	

MATERIAL:

NO	DESCRIPTION	MATERIAL	QTY	UNIT	
Figure 1 (LHS repair scheme)					
1	Doubler 1	Aluminum Sheet 2024-T3 thickness 1.2 MM	1	PC	
2	Doubler 2	Aluminum Sheet 2024-T3 thickness 1.2 MM	1	PC	
3	Shim 1	Aluminum Sheet 2024-T3 thickness 1.0 MM	1	PC	
Figu	Figure 2 (RHS repair scheme)				
4	Doubler 3	Aluminum Sheet 2024-T3 thickness 1.2 MM	1	PCS	
5	Doubler 4	Aluminum Sheet 2024-T3 thickness 1.2 MM	1	PCS	
6	Shim 2	Aluminum Sheet 2024-T3 thickness1.0 MM	1	PCS	
Consumable Materials					
7	Mastic	PR1782B2	AR	-	
8	Devcon - F	CM 6047	AR	-	
9	Alodine	1200	AR	-	
10	Chromate Primer Epoxy	Strontium Chromate, MIL-P-23377 or equivalent	AR	-	
11	Mastinox	CA1010	AR	-	
Rive	Rivets References For Stainless Steel Sheet Mount				
12	Round Head Solid Rivets	21215TB3208	100	EACH	
13	Round Head Solid Rivets	21215TB4008	100	EACH	
14	Countersunk Solid Rivets	21217TB3208	100	EACH	
15	Countersunk Blind Rivets	NAS1921C04-03	100	EACH	
16	Round Head Blind Rivets	NAS1919C04-02	100	EACH	
17	Round Head Blind Rivets	NAS1919C05-02	100	EACH	

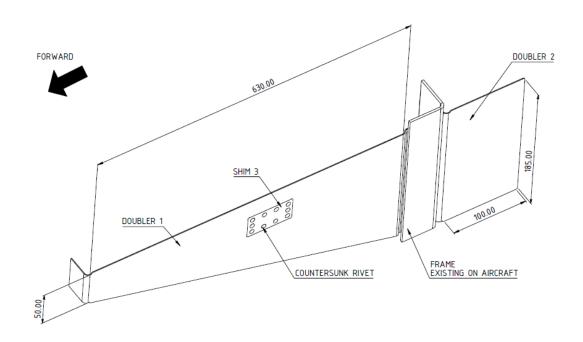
DRAS

Date: 17/07/2019 Issue: 0 Page: 13 of 15

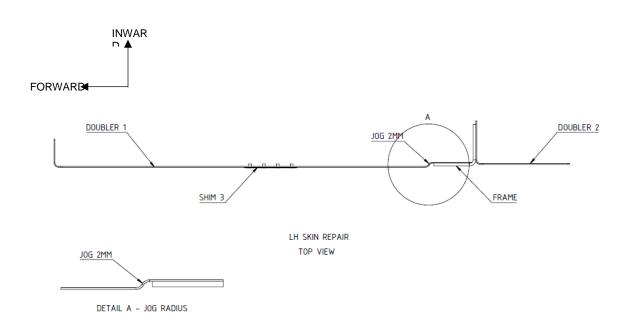
RECOMMENDED INSPECTION:

ITEM	MAINTENANCE ACTION	INTERVAL
Rivet / Fasteners	 Inspect each rivet/fastener: 1. Security of attachment 2. Condition of Smokey rivet Visual check the repair area for signs of cracks and corrosion Visual check all the rivet/fastener are free of damage and not wear out 	First 50 FH, and then every 150 FH until 600 FH
Sealant	 Inspect sealant on the repair area 1. Condition of the sealant Visual check on the sealant and ensure is in good condition no leak found on the repair area. 	First 50 FH, and then every 150 FH until 600 FH

"

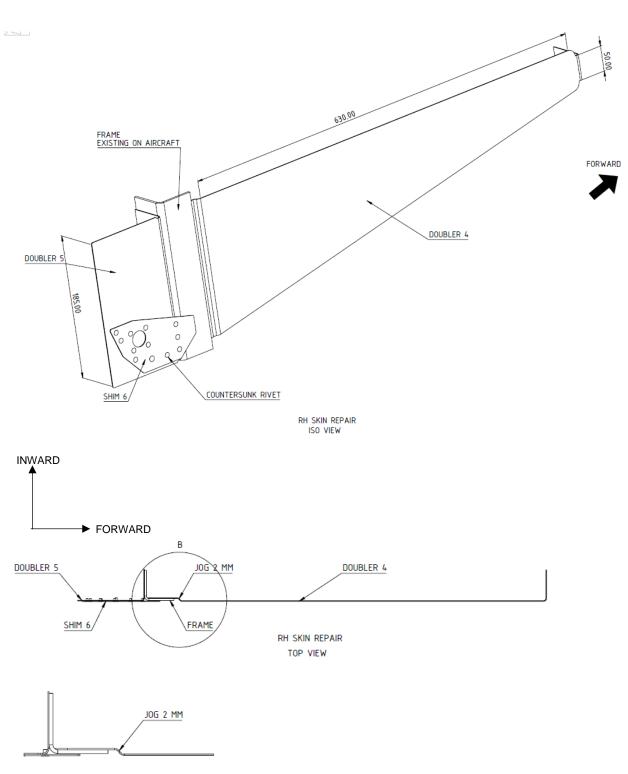


DRAS


Date: 17/07/2019 Issue: 0 Page: 14 of 15

APPENDIX A

LH SKIN REPAIR ISO VIEW



DRAS

Date: 17/07/2019 Issue: 0 Page: 15 of 15

APPENDIX B

RH Skin Repair Scheme

...

DETAIL B - JOG RADIUS